Natural quasicrystal with decagonal symmetry

Luca Bindi, Nan Yao, Chaney Lin, Lincoln S. Hollister, Christopher L. Andronicos, Vadim V. Distler, Michael P. Eddy, Alexander Kostin, Valery Kryachko, Glenn J. MacPherson, William M. Steinhardt, Marina Yudovskaya, Paul J. Steinhardt

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula.

Original languageEnglish (US)
Article number9111
JournalScientific reports
Volume5
DOIs
StatePublished - 2015

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Natural quasicrystal with decagonal symmetry'. Together they form a unique fingerprint.

Cite this