TY - JOUR
T1 - Nanosecond pulsed plasma activated C2H4/O2/Ar mixtures in a flow reactor
AU - Yang, Suo
AU - Gao, Xiang
AU - Yang, Vigor
AU - Sun, Wenting
AU - Nagaraja, Sharath
AU - Lefkowitz, Joseph K.
AU - Ju, Yiguang
N1 - Publisher Copyright:
Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
PY - 2016
Y1 - 2016
N2 - The present work combines numerical and experimental efforts to investigate the effect of nanosecond pulsed plasma discharges on the low-temperature oxidation of C2H4/O2/Ar mixtures under reduced pressure conditions. The nonequilibrium plasma discharge is modeled using a one-dimensional framework, employing separate electron and neutral gas temperatures, and using a detailed plasma and combustion chemical kinetic mechanism. Good agreement is seen between the numerical and experimental results, and both results show that plasma enables lowtemperature C2H4oxidation. Compared to zero-dimensional modeling, the one-dimensional modeling significantly improves predictions, probably because it produces a more complete physical description (including sheath formation and accurate reduced electric field). Furthermore, the one- and zero-dimensional models show very different reaction pathways, using the same chemical kinetic mechanism and thus suggest different interpretations of the experimental results. Two kinetic mechanisms (HP-Mech and USC Mech-II) are examined in this study. The modeling results from HP-Mech agree better with the experimental results than those of USC Mech-II because USC Mech-II does not include the OH + C2H4= CH2CH2OH reaction pathway. The model shows that 75-77% of the input pulse energy is consumed during the breakdown process in electron impact dissociation, excitation, and ionization reactions, which efficiently produce reactive radical species, fuel fragments, and excited species. The modeling results using HP-Mech reveal that reactions between O(∗D) and C2H4generate 24% of OH, 19% of HCO, 60% of CH3, 63% of CH2, and 17% of CH2O. These in turn significantly enhance hydrocarbon oxidation, since 83% of CO comes from HCO and 53% of CO2comes from CH2under the present low-temperature environment and short time scale.
AB - The present work combines numerical and experimental efforts to investigate the effect of nanosecond pulsed plasma discharges on the low-temperature oxidation of C2H4/O2/Ar mixtures under reduced pressure conditions. The nonequilibrium plasma discharge is modeled using a one-dimensional framework, employing separate electron and neutral gas temperatures, and using a detailed plasma and combustion chemical kinetic mechanism. Good agreement is seen between the numerical and experimental results, and both results show that plasma enables lowtemperature C2H4oxidation. Compared to zero-dimensional modeling, the one-dimensional modeling significantly improves predictions, probably because it produces a more complete physical description (including sheath formation and accurate reduced electric field). Furthermore, the one- and zero-dimensional models show very different reaction pathways, using the same chemical kinetic mechanism and thus suggest different interpretations of the experimental results. Two kinetic mechanisms (HP-Mech and USC Mech-II) are examined in this study. The modeling results from HP-Mech agree better with the experimental results than those of USC Mech-II because USC Mech-II does not include the OH + C2H4= CH2CH2OH reaction pathway. The model shows that 75-77% of the input pulse energy is consumed during the breakdown process in electron impact dissociation, excitation, and ionization reactions, which efficiently produce reactive radical species, fuel fragments, and excited species. The modeling results using HP-Mech reveal that reactions between O(∗D) and C2H4generate 24% of OH, 19% of HCO, 60% of CH3, 63% of CH2, and 17% of CH2O. These in turn significantly enhance hydrocarbon oxidation, since 83% of CO comes from HCO and 53% of CO2comes from CH2under the present low-temperature environment and short time scale.
UR - http://www.scopus.com/inward/record.url?scp=84983604569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983604569&partnerID=8YFLogxK
U2 - 10.2514/1.B36060
DO - 10.2514/1.B36060
M3 - Article
AN - SCOPUS:84983604569
SN - 0748-4658
VL - 32
SP - 1240
EP - 1252
JO - Journal of Propulsion and Power
JF - Journal of Propulsion and Power
IS - 5
ER -