TY - JOUR
T1 - Munc13-4 is a limiting factor in the pathway required for platelet granule release and hemostasis
AU - Ren, Qiansheng
AU - Wimmer, Christian
AU - Chicka, Michael C.
AU - Ye, Shaojing
AU - Ren, Yi
AU - Hughson, Frederick M.
AU - Whiteheart, Sidney W.
PY - 2010/8/12
Y1 - 2010/8/12
N2 - Activation-dependent platelet granule release is mediated by integral membrane proteins called soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) and their regulators; however, the mechanisms for this process are ill-defined. To further characterize platelet secretion, we analyzed the function of platelets from Unc13dJinx mice. Platelets from these animals lack the putative vesicle priming factor, Munc13-4, and have a severe secretion defect. Release from dense granules was completely ablated and that from α-granules and lysosomes was severely compromised. Unc13dJinx platelets showed attenuated aggregation and, consequently, Unc13dJinx mice had prolonged tail-bleeding times. The secretion defect was not due to altered expression of SNAREs or SNARE regulators, defective granule biogenesis, or faulty platelet activation. The defective release could be rescued by adding recombinant Munc13-4 to permeabilized Unc13dJinx platelets. In wild-type mouse platelets, Munc13-4 levels were lower than those of SNAREs suggesting that Munc13-4 could be a limiting component of the platelets' secretory machinery. Consistently, Munc13-4 levels directly correlated with the extent of granule release from permeabilized platelets and from intact, heterozygous Unc13dJinx platelets. These data highlight the importance of Munc13-4 in platelets and indicate that it is a limiting factor required for platelet secretion andhemostasis.
AB - Activation-dependent platelet granule release is mediated by integral membrane proteins called soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) and their regulators; however, the mechanisms for this process are ill-defined. To further characterize platelet secretion, we analyzed the function of platelets from Unc13dJinx mice. Platelets from these animals lack the putative vesicle priming factor, Munc13-4, and have a severe secretion defect. Release from dense granules was completely ablated and that from α-granules and lysosomes was severely compromised. Unc13dJinx platelets showed attenuated aggregation and, consequently, Unc13dJinx mice had prolonged tail-bleeding times. The secretion defect was not due to altered expression of SNAREs or SNARE regulators, defective granule biogenesis, or faulty platelet activation. The defective release could be rescued by adding recombinant Munc13-4 to permeabilized Unc13dJinx platelets. In wild-type mouse platelets, Munc13-4 levels were lower than those of SNAREs suggesting that Munc13-4 could be a limiting component of the platelets' secretory machinery. Consistently, Munc13-4 levels directly correlated with the extent of granule release from permeabilized platelets and from intact, heterozygous Unc13dJinx platelets. These data highlight the importance of Munc13-4 in platelets and indicate that it is a limiting factor required for platelet secretion andhemostasis.
UR - http://www.scopus.com/inward/record.url?scp=77956519683&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956519683&partnerID=8YFLogxK
U2 - 10.1182/blood-2010-02-270934
DO - 10.1182/blood-2010-02-270934
M3 - Article
C2 - 20435885
AN - SCOPUS:77956519683
SN - 0006-4971
VL - 116
SP - 869
EP - 877
JO - Blood
JF - Blood
IS - 6
ER -