Abstract
Prior research has identified the lateral occipital complex (LOC) as a critical cortical region for the representation of object shape in humans. However, little is known about the nature of the representations contained in the LOC and their relationship to the perceptual experience of shape. We used human functional MRI to measure the physical, behavioral, and neural similarity between pairs of novel shapes to ask whether the representations of shape contained in subregions of the LOC more closely reflect the physical stimuli themselves, or the perceptual experience of those stimuli. Perceptual similarity measures for each pair of shapes were obtained from a psychophysical same-different task; physical similarity measures were based on stimulus parameters; and neural similarity measures were obtained from multivoxel pattern analysis methods applied to anterior LOC (pFs) and posterior LOC (LO). We found that the pattern of pairwise shape similarities in LO most closely matched physical shape similarities, whereas shape similarities in pFs most closely matched perceptual shape similarities. Further, shape representations were similar across participants in LO but highly variable across participants in pFs. Together, these findings indicate that activation patterns in subregions of object-selective cortex encode objects according to a hierarchy, with stimulus-based representations in posterior regions and subjective and observer-specific representations in anterior regions.
Original language | English (US) |
---|---|
Article number | e187 |
Pages (from-to) | 1459-1467 |
Number of pages | 9 |
Journal | PLoS biology |
Volume | 6 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2008 |
All Science Journal Classification (ASJC) codes
- General Neuroscience
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences