Multimodal Knowledge Graph for Deep Learning Papers and Code

Amar Viswanathan Kannan, Dmitriy Fradkin, Ioannis Akrotirianakis, Tugba Kulahcioglu, Arquimedes Canedo, Aditi Roy, Shih Yuan Yu, Malawade Arnav, Mohammad Abdullah Al Faruque

Research output: Chapter in Book/Report/Conference proceedingConference contribution

44 Scopus citations

Abstract

Keeping up with the rapid growth of Deep Learning (DL) research is a daunting task. While existing scientific literature search systems provide text search capabilities and can identify similar papers, gaining an in-depth understanding of a new approach or an application is much more complicated. Many publications leverage multiple modalities to convey their findings and spread their ideas - they include pseudocode, tables, images and diagrams in addition to text, and often make publicly accessible their implementations. It is important to be able to represent and query them as well. We utilize RDF Knowledge graphs (KGs) to represent multimodal information and enable expressive querying over modalities. In our demo we present an approach for extracting KGs from different modalities, namely text, architecture images and source code. We show how graph queries can be used to get insights into different facets (modalities) of a paper, and its associated code implementation. Our innovation lies in the multimodal nature of the KG we create. While our work is of direct interest to DL researchers and practitioners, our approaches can also be leveraged in other scientific domains.

Original languageEnglish (US)
Title of host publicationCIKM 2020 - Proceedings of the 29th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages3417-3420
Number of pages4
ISBN (Electronic)9781450368599
DOIs
StatePublished - Oct 19 2020
Externally publishedYes
Event29th ACM International Conference on Information and Knowledge Management, CIKM 2020 - Virtual, Online, Ireland
Duration: Oct 19 2020Oct 23 2020

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference29th ACM International Conference on Information and Knowledge Management, CIKM 2020
Country/TerritoryIreland
CityVirtual, Online
Period10/19/2010/23/20

All Science Journal Classification (ASJC) codes

  • General Business, Management and Accounting
  • General Decision Sciences

Keywords

  • deep learning
  • knowledge graphs
  • multimodal information retrieval
  • scientific knowledge graph exploration
  • scientific knowledge graphs

Fingerprint

Dive into the research topics of 'Multimodal Knowledge Graph for Deep Learning Papers and Code'. Together they form a unique fingerprint.

Cite this