Multifunctional composites for elastic and electromagnetic wave propagation

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Composites are ideally suited to achieve desirable multifunctional effective properties since the best properties of different materials can be judiciously combined with designed microstructures. Here, we establish cross-property relations for two-phase composite media that link effective elastic and electromagnetic wave characteristics to one another, including the respective effective wave speeds and attenuation coefficients, which facilitate multifunctional material design. This is achieved by deriving accurate formulas for the effective electromagnetic and elastodynamic properties that depend on the wavelengths of the incident waves and the microstructure via the spectral density. Our formulas enable us to explore the wave characteristics of a broad class of disordered microstructures because they apply, unlike conventional formulas, to a wide range of incident wavelengths (i.e., well beyond the long-wavelength regime). This capability enables us to study the dynamic properties of exotic disordered “hyperuniform” composites that can have advantages over crystalline ones, such as nearly optimal, direction-independent properties and robustness against defects. We specifically show that disordered “stealthy” hyperuniform microstructures exhibit novel wave characteristics (e.g., low-pass filters that transmit waves “isotropically” up to a finite wavenumber). Our cross-property relations for the effective wave characteristics can be applied to design multifunctional composites via inverse techniques. Design examples include structural components that require high stiffness and electromagnetic absorption; heat sinks for central processing units and sound-absorbing housings for motors that have to efficiently emit thermal radiation and suppress mechanical vibrations; and nondestructive evaluation of the elastic moduli of materials from the effective dielectric response.

Original languageEnglish (US)
Pages (from-to)8764-8774
Number of pages11
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number16
DOIs
StatePublished - Apr 21 2020

All Science Journal Classification (ASJC) codes

  • General

Keywords

  • Cross-property
  • Multifunctionality
  • Stealthy hyperuniform
  • Strong-contrast expansion

Fingerprint

Dive into the research topics of 'Multifunctional composites for elastic and electromagnetic wave propagation'. Together they form a unique fingerprint.

Cite this