Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies

Yang Yang, Tanner Culpitt, Sharon Hammes-Schiffer

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF- and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

Original languageEnglish (US)
Pages (from-to)1765-1770
Number of pages6
JournalJournal of Physical Chemistry Letters
Volume9
Issue number7
DOIs
StatePublished - Apr 5 2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies'. Together they form a unique fingerprint.

Cite this