TY - JOUR
T1 - Multicomponent Quantum Chemistry
T2 - Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method
AU - Pavošević, Fabijan
AU - Culpitt, Tanner
AU - Hammes-Schiffer, Sharon
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/5/13
Y1 - 2020/5/13
N2 - In multicomponent quantum chemistry, more than one type of particle is treated quantum mechanically with either density functional theory or wave function based methods. In particular, the nuclear-electronic orbital (NEO) approach treats specified nuclei, typically hydrogen nuclei, on the same level as the electrons. This approach enables the incorporation of nuclear quantum effects, such as nuclear delocalization, anharmonicity, zero-point energy, and tunneling, as well as non-Born-Oppenheimer effects directly into quantum chemistry calculations. Such effects impact optimized geometries, molecular vibrational frequencies, reaction paths, isotope effects, and dynamical simulations. Multicomponent density functional theory (NEO-DFT) and time-dependent DFT (NEO-TDDFT) achieve an optimal balance between computational efficiency and accuracy for computing ground and excited state properties, respectively. Multicomponent wave function based methods, such as the coupled cluster singles and doubles (NEO-CCSD) method for ground states and the equation-of-motion counterpart (NEO-EOM-CCSD) for excited states, attain similar accuracy without requiring any parametrization and can be systematically improved but are more computationally expensive. Variants of the orbital-optimized perturbation theory (NEO-OOMP2) method achieve nearly the accuracy of NEO-CCSD for ground states with significantly lower computational cost. Additional approaches for computing excited electronic, vibrational, and vibronic states include the delta self-consistent field (NEO-ΔSCF), complete active space SCF (NEO-CASSCF), and nonorthogonal configuration interaction methods. Multireference methods are particularly important for describing hydrogen tunneling processes. Other types of multicomponent systems, such as those containing electrons and positrons, have also been studied within the NEO framework. The NEO approach allows the incorporation of nuclear quantum effects and non-Born-Oppenheimer effects for specified nuclei into quantum chemistry calculations in an accessible and computationally efficient manner.
AB - In multicomponent quantum chemistry, more than one type of particle is treated quantum mechanically with either density functional theory or wave function based methods. In particular, the nuclear-electronic orbital (NEO) approach treats specified nuclei, typically hydrogen nuclei, on the same level as the electrons. This approach enables the incorporation of nuclear quantum effects, such as nuclear delocalization, anharmonicity, zero-point energy, and tunneling, as well as non-Born-Oppenheimer effects directly into quantum chemistry calculations. Such effects impact optimized geometries, molecular vibrational frequencies, reaction paths, isotope effects, and dynamical simulations. Multicomponent density functional theory (NEO-DFT) and time-dependent DFT (NEO-TDDFT) achieve an optimal balance between computational efficiency and accuracy for computing ground and excited state properties, respectively. Multicomponent wave function based methods, such as the coupled cluster singles and doubles (NEO-CCSD) method for ground states and the equation-of-motion counterpart (NEO-EOM-CCSD) for excited states, attain similar accuracy without requiring any parametrization and can be systematically improved but are more computationally expensive. Variants of the orbital-optimized perturbation theory (NEO-OOMP2) method achieve nearly the accuracy of NEO-CCSD for ground states with significantly lower computational cost. Additional approaches for computing excited electronic, vibrational, and vibronic states include the delta self-consistent field (NEO-ΔSCF), complete active space SCF (NEO-CASSCF), and nonorthogonal configuration interaction methods. Multireference methods are particularly important for describing hydrogen tunneling processes. Other types of multicomponent systems, such as those containing electrons and positrons, have also been studied within the NEO framework. The NEO approach allows the incorporation of nuclear quantum effects and non-Born-Oppenheimer effects for specified nuclei into quantum chemistry calculations in an accessible and computationally efficient manner.
UR - http://www.scopus.com/inward/record.url?scp=85083399156&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083399156&partnerID=8YFLogxK
U2 - 10.1021/acs.chemrev.9b00798
DO - 10.1021/acs.chemrev.9b00798
M3 - Review article
C2 - 32283015
AN - SCOPUS:85083399156
SN - 0009-2665
VL - 120
SP - 4222
EP - 4253
JO - Chemical Reviews
JF - Chemical Reviews
IS - 9
ER -