Multicomponent coupled cluster singles and doubles and Brueckner doubles methods: Proton densities and energies

Fabijan Pavošević, Sharon Hammes-Schiffer

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The nuclear-electronic orbital (NEO) framework enables computationally practical coupled cluster calculations of multicomponent molecular systems, in which all electrons and specified nuclei, typically protons, are treated quantum mechanically. In addition to energies, computing accurate proton densities is essential for the calculation of reliable molecular properties, including vibrationally averaged geometries and vibrational frequencies. Herein, the Lagrangian formalism for the multicomponent coupled cluster with single and double excitations (NEO-CCSD) method is derived and implemented. The multicomponent coupled cluster with double excitations method using optimized Brueckner orbitals, denoted as NEO-BCCD, is also developed. Both of these methods are used to compute the proton densities for two molecular systems. The results illustrate that orbital relaxation effects, which can be included either indirectly with the NEO-CCSD method or directly with the NEO-BCCD method, are critical for computing even qualitatively accurate proton densities. Both methods are also able to provide accurate proton affinities and vibrationally averaged optimized geometries. This Lagrangian formalism will enable the calculation of other properties such as analytical nuclear gradients and Hessians with NEO coupled cluster methods. Moreover, the accuracy of these methods may be improved systematically by the inclusion of higher-order excitations. Thus, this work provides the foundation for a wide range of future methodological developments and applications within the NEO framework.

Original languageEnglish (US)
Article number074104
JournalJournal of Chemical Physics
Volume151
Issue number7
DOIs
StatePublished - Aug 21 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Multicomponent coupled cluster singles and doubles and Brueckner doubles methods: Proton densities and energies'. Together they form a unique fingerprint.

Cite this