TY - GEN
T1 - Multi-path key establishment against REM attacks in wireless ad hoc networks
AU - Lan, Tian
AU - Lee, Ruby
AU - Chiang, Mung
PY - 2009
Y1 - 2009
N2 - Secure communications in wireless ad hoc networks require setting up end-to-end secret keys for communicating node pairs. Due to physical limitations and scalability requirements, full key-connectivity can not be achieved by key pre-distribution. In this paper, we develop an analytical framework for the on-demand key establishment approach. We propose a novel security metric, called REM resilience vector to quantify the resilience of any key establishment schemes against Revealing, Erasure, and Modification (REM) attacks. Our analysis shows that previous key establishment schemes are vulnerable under REM attacks. Relying on the new security metric, we prove a universal bound on achievable REM resilience vectors for any on-demand key establishment scheme. This bound that characterizes the optimal security performance analytically is shown to be tight, as we propose a REM-resilient key establishment scheme which achieves any vector within this bound. In addition, we develop a class of low complexity key establishment schemes which achieve nearly-optimal REM-attack resilience.
AB - Secure communications in wireless ad hoc networks require setting up end-to-end secret keys for communicating node pairs. Due to physical limitations and scalability requirements, full key-connectivity can not be achieved by key pre-distribution. In this paper, we develop an analytical framework for the on-demand key establishment approach. We propose a novel security metric, called REM resilience vector to quantify the resilience of any key establishment schemes against Revealing, Erasure, and Modification (REM) attacks. Our analysis shows that previous key establishment schemes are vulnerable under REM attacks. Relying on the new security metric, we prove a universal bound on achievable REM resilience vectors for any on-demand key establishment scheme. This bound that characterizes the optimal security performance analytically is shown to be tight, as we propose a REM-resilient key establishment scheme which achieves any vector within this bound. In addition, we develop a class of low complexity key establishment schemes which achieve nearly-optimal REM-attack resilience.
UR - http://www.scopus.com/inward/record.url?scp=77951518380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951518380&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2009.5426213
DO - 10.1109/GLOCOM.2009.5426213
M3 - Conference contribution
AN - SCOPUS:77951518380
SN - 9781424441488
T3 - GLOBECOM - IEEE Global Telecommunications Conference
BT - GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference
T2 - 2009 IEEE Global Telecommunications Conference, GLOBECOM 2009
Y2 - 30 November 2009 through 4 December 2009
ER -