Multi-Kernel, Deep Neural Network and Hybrid Models for Privacy Preserving Machine Learning

Mert Al, Thee Chanyaswad, Sun Yuan Kung

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

The rapid rise of IoT and Big Data can facilitate the use of data to enhance our quality of life. However, the omnipresent and sensitive nature of data can simultaneously generate privacy concerns. Hence, there is a strong need to develop techniques that ensure the data serve the intended purposes, but not for prying into one's sensitive information. We address this challenge via utility maximizing lossy compression of data. Our techniques combine the mathematical rigor of Kernel Learning models with the structural richness of Deep Neural Networks, and lead to the novel Multi-Kernel Learning and Hybrid Learning models. We systematically construct the proposed models in progressive stages, as motivated by the cumulative improvement in the experimental results from the two previously non-intersecting regimes, namely, Kernel Learning and Deep Neural Networks. The final experimental results of the three proposed models on three mobile sensing datasets show that, not only are our methods able to improve the utility prediction accuracies, but they can also cause sensitive predictions to perform nearly as bad as random guessing, resulting in a win-win situation in terms of utility and privacy.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2891-2895
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - Sep 10 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: Apr 15 2018Apr 20 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period4/15/184/20/18

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Keywords

  • Big data
  • Classification
  • Discriminant information
  • Kernel methods
  • Privacy preserving machine learning

Fingerprint

Dive into the research topics of 'Multi-Kernel, Deep Neural Network and Hybrid Models for Privacy Preserving Machine Learning'. Together they form a unique fingerprint.

Cite this