@inproceedings{3cb26e625a374594bdd2ec96e14da9e9,
title = "Multi-body resonance orbit generation and application within a hybrid optimal control framework",
abstract = "This paper details early work to incorporate resonance orbits, their invariant manifolds, and associated families into an automated global optimization tool for solution of optimal impulsive and low-thrust spacecraft trajectories in multibody environments. Previous work by the authors have shown the ability to use other key dynamical structure of the circular restricted three-body problem (e.g. libration point orbits and their invariant manifolds) within the same automated global optimization framework to produce low-energy trajectory solutions. We first show how to generate resonance orbits of the first species, providing examples of the Earth-Moon and Jupiter-Europa systems, and proceed to show how these structures are used within the optimization framework. Several non-trivial impulsive and low-thrust trajectory problems from low-Earth to resonance orbits, and resonance-resonance transfers are shown with Pareto front solutions.",
author = "Devin Bunce and Ryne Beeson and Vishwa Shah and Victoria Coverstone",
year = "2017",
language = "English (US)",
isbn = "9780877036371",
series = "Advances in the Astronautical Sciences",
publisher = "Univelt Inc.",
pages = "751--770",
editor = "Sims, {Jon A.} and Leve, {Frederick A.} and McMahon, {Jay W.} and Yanping Guo",
booktitle = "Spaceflight Mechanics 2017",
address = "United States",
note = "27th AAS/AIAA Space Flight Mechanics Meeting, 2017 ; Conference date: 05-02-2017 Through 09-02-2017",
}