TY - GEN
T1 - Multi-antenna Gaussian broadcast channels with confidential messages
AU - Liu, Ruoheng
AU - Poor, H. Vincent
PY - 2008
Y1 - 2008
N2 - In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over a Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with information-theoretic secrecy. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multi-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound proves to be consistent with the boundary of the secret dirtypaper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, a numerical example demonstrates that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.
AB - In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over a Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with information-theoretic secrecy. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multi-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound proves to be consistent with the boundary of the secret dirtypaper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, a numerical example demonstrates that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.
UR - http://www.scopus.com/inward/record.url?scp=52349120521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52349120521&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2008.4595381
DO - 10.1109/ISIT.2008.4595381
M3 - Conference contribution
AN - SCOPUS:52349120521
SN - 9781424422579
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2202
EP - 2206
BT - Proceedings - 2008 IEEE International Symposium on Information Theory, ISIT 2008
T2 - 2008 IEEE International Symposium on Information Theory, ISIT 2008
Y2 - 6 July 2008 through 11 July 2008
ER -