MQUAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, Danqi Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

The information stored in large language models (LLMs) falls out of date quickly, and retraining from scratch is often not an option. This has recently given rise to a range of techniques for injecting new facts through updating model weights. Current evaluation paradigms are extremely limited, mainly validating the recall of edited facts, but changing one fact should cause rippling changes to the model's related beliefs. If we edit the UK Prime Minister to now be Rishi Sunak, then we should get a different answer to Who is married to the British Prime Minister? In this work, we present a benchmark, MQUAKE (Multi-hop Question Answering for Knowledge Editing), comprising multi-hop questions that assess whether edited models correctly answer questions where the answer should change as an entailed consequence of edited facts. While we find that current knowledge-editing approaches can recall edited facts accurately, they fail catastrophically on the constructed multi-hop questions. We thus propose a simple memory-based approach, MeLLo, which stores all edited facts externally while prompting the language model iteratively to generate answers that are consistent with the edited facts. While MQUAKE remains challenging, we show that MeLLo scales well with LLMs (up to 175B) and outperforms previous model editors by a large margin.

Original languageEnglish (US)
Title of host publicationEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
EditorsHouda Bouamor, Juan Pino, Kalika Bali
PublisherAssociation for Computational Linguistics (ACL)
Pages15686-15702
Number of pages17
ISBN (Electronic)9798891760608
StatePublished - 2023
Event2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore
Duration: Dec 6 2023Dec 10 2023

Publication series

NameEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Country/TerritorySingapore
CityHybrid, Singapore
Period12/6/2312/10/23

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'MQUAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions'. Together they form a unique fingerprint.

Cite this