Abstract
Recent work by Zamolodchikov and others has uncovered a solvable irrelevant deformation of general 2D CFTs, defined by turning on the dimension 4 operator TT¯ ,the product of the left- and right-moving stress tensor. We propose that in the holographic dual, this deformation represents a geometric cutoff that removes the asymptotic region of AdS and places the QFT on a Dirichlet wall at finite radial distance r = rc in the bulk. As a quantitative check of the proposed duality, we compute the signal propagation speed, energy spectrum, and thermodynamic relations on both sides. In all cases, we obtain a precise match. We derive an exact RG flow equation for the metric dependence of the effective action of the TT¯ deformed theory, and find that it coincides with the Hamilton-Jacobi equation that governs the radial evolution of the classical gravity action in AdS.
Original language | English (US) |
---|---|
Article number | 10 |
Journal | Journal of High Energy Physics |
Volume | 2018 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2018 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
Keywords
- AdS-CFT Correspondence
- Conformal Field Theory
- Renormalization Group