TY - GEN
T1 - Moving-target defense for detecting coordinated cyber-physical attacks in power grids
AU - Lakshminarayana, Subhash
AU - Belmega, E. Veronica
AU - Poor, H. Vincent
PY - 2019/10
Y1 - 2019/10
N2 - This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid's transmission line reactances using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost.
AB - This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid's transmission line reactances using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost.
UR - http://www.scopus.com/inward/record.url?scp=85076430045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076430045&partnerID=8YFLogxK
U2 - 10.1109/SmartGridComm.2019.8909767
DO - 10.1109/SmartGridComm.2019.8909767
M3 - Conference contribution
T3 - 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2019
BT - 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2019
Y2 - 21 October 2019 through 23 October 2019
ER -