Moving Crystal Phases of a Quantum Wigner Solid in an Ultra-High-Quality 2D Electron System

P. T. Madathil, K. A.Villegas Rosales, Y. J. Chung, K. W. West, K. W. Baldwin, L. N. Pfeiffer, L. W. Engel, M. Shayegan

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


In low-disorder, two-dimensional electron systems (2DESs), the fractional quantum Hall states at very small Landau level fillings (ν) terminate in a Wigner solid (WS) phase, where electrons arrange themselves in a periodic array. The WS is typically pinned by the residual disorder sites and manifests an insulating behavior, with nonlinear current-voltage (I-V) and noise characteristics. We report here measurements on an ultralow-disorder, dilute 2DES, confined to a GaAs quantum well. In the ν<1/5 range, superimposed on a highly insulating longitudinal resistance, the 2DES exhibits a developing fractional quantum Hall state at ν=1/7, attesting to its exceptional high quality and dominance of electron-electron interaction in the low filling regime. In the nearby insulating phases, we observe remarkable nonlinear I-V and noise characteristics as a function of increasing current, with current thresholds delineating three distinct phases of the WS: a pinned phase (P1) with very small noise, a second phase (P2) in which dV/dI fluctuates between positive and negative values and is accompanied by very high noise, and a third phase (P3) where dV/dI is nearly constant and small, and noise is about an order of magnitude lower than in P2. In the depinned (P2 and P3) phases, the noise spectrum also reveals well-defined peaks at frequencies that vary linearly with the applied current, suggestive of washboard frequencies. We discuss the data in light of a recent theory that proposes different dynamic phases for a driven WS.

Original languageEnglish (US)
Article number236501
JournalPhysical review letters
Issue number23
StatePublished - Dec 8 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'Moving Crystal Phases of a Quantum Wigner Solid in an Ultra-High-Quality 2D Electron System'. Together they form a unique fingerprint.

Cite this