Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups

Naomi Ehrich Leonard, P. S. Krishnaprasad

Research output: Contribution to journalArticle

133 Scopus citations

Abstract

In this paper we address the constructive controllability problem for drift-free, left-invariant systems on finite-dimensional Lie groups with fewer controls than state dimension. We consider small (∊) amplitude, low-frequency, periodically time-varying controls and derive average solutions for system behavior. We show how the pth-order average formula can be used to construct open-loop controls for point-to-point maneuvering of systems which require up to (p - 1) iterations of Lie brackets to satisfy the Lie algebra controllability rank condition. In the cases p = 2.3, we give algorithms for constructing these controls as a function of structure constants that define the control authority, i.e., the actuator capability, of the system. The algorithms are based on a geometric interpretation of the average formulas and produce sinusoidal controls that solve the constructive controllability problem with O(∊p) accuracy in general (exactly if the Lie algebra is nilpotent). The methodology is applicable to a variety of control problems and is illustrated for the motion control problem of an autonomous underwater vehicle with as few as three control inputs.

Original languageEnglish (US)
Pages (from-to)1539-1554
Number of pages16
JournalIEEE Transactions on Automatic Control
Volume40
Issue number9
DOIs
StatePublished - Sep 1995

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Motion Control of Drift-Free, Left-Invariant Systems on Lie Groups'. Together they form a unique fingerprint.

Cite this