Monte Carlo control loops for cosmic shear cosmology with des Year 1 data MONTE CARLO CONTROL LOOPS for COSMIC SHEAR .. KACPRZAK T. et al.

T. Kacprzak, J. Herbel, A. Nicola, R. Sgier, F. Tarsitano, C. Bruderer, A. Amara, A. Refregier, S. L. Bridle, A. Drlica-Wagner, D. Gruen, W. G. Hartley, B. Hoyle, L. F. Secco, J. Zuntz, J. Annis, S. Avila, E. Bertin, D. Brooks, E. Buckley-GeerA. Carnero Rosell, M. Carrasco Kind, J. Carretero, L. N. Da Costa, J. De Vicente, S. Desai, H. T. Diehl, P. Doel, J. García-Bellido, E. Gaztanaga, R. A. Gruendl, J. Gschwend, G. Gutierrez, D. L. Hollowood, K. Honscheid, D. J. James, M. Jarvis, M. Lima, M. A.G. Maia, J. L. Marshall, P. Melchior, F. Menanteau, R. Miquel, F. Paz-Chinchón, A. A. Plazas, E. Sanchez, V. Scarpine, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E.C. Swanson, G. Tarle, V. Vikram, J. Weller

Research output: Contribution to journalArticle

Abstract

Weak lensing by large-scale structure is a powerful probe of cosmology and of the dark universe. This cosmic shear technique relies on the accurate measurement of the shapes and redshifts of background galaxies and requires precise control of systematic errors. Monte Carlo control loops (MCCL) is a forward modeling method designed to tackle this problem. It relies on the ultra fast image generator (UFig) to produce simulated images tuned to match the target data statistically, followed by calibrations and tolerance loops. We present the first end-To-end application of this method, on the Dark Energy Survey (DES) Year 1 wide field imaging data. We simultaneously measure the shear power spectrum Câ"and the redshift distribution n(z) of the background galaxy sample. The method includes maps of the systematic sources, point spread function (PSF), an approximate Bayesian computation (ABC) inference of the simulation model parameters, a shear calibration scheme, and a fast method to estimate the covariance matrix. We find a close statistical agreement between the simulations and the DES Y1 data using an array of diagnostics. In a nontomographic setting, we derive a set of Câ"and n(z) curves that encode the cosmic shear measurement, as well as the systematic uncertainty. Following a blinding scheme, we measure the combination of ωm, σ8, and intrinsic alignment amplitude AIA, defined as S8DIA=σ8(ωm/0.3)0.5DIA, where DIA=1-0.11(AIA-1). We find S8DIA=0.895-0.039+0.054, where systematics are at the level of roughly 60% of the statistical errors. We discuss these results in the context of earlier cosmic shear analyses of the DES Y1 data. Our findings indicate that this method and its fast runtime offer good prospects for cosmic shear measurements with future wide-field surveys.

Original languageEnglish (US)
Article number082003
JournalPhysical Review D
Volume101
Issue number8
DOIs
StatePublished - Apr 15 2020

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Monte Carlo control loops for cosmic shear cosmology with des Year 1 data MONTE CARLO CONTROL LOOPS for COSMIC SHEAR .. KACPRZAK T. et al.'. Together they form a unique fingerprint.

  • Cite this

    Kacprzak, T., Herbel, J., Nicola, A., Sgier, R., Tarsitano, F., Bruderer, C., Amara, A., Refregier, A., Bridle, S. L., Drlica-Wagner, A., Gruen, D., Hartley, W. G., Hoyle, B., Secco, L. F., Zuntz, J., Annis, J., Avila, S., Bertin, E., Brooks, D., ... Weller, J. (2020). Monte Carlo control loops for cosmic shear cosmology with des Year 1 data MONTE CARLO CONTROL LOOPS for COSMIC SHEAR .. KACPRZAK T. et al. Physical Review D, 101(8), [082003]. https://doi.org/10.1103/PhysRevD.101.082003