Abstract
A family of monotonically convergent algorithms is presented for solving a wide class of quantum optimal control problems satisfying an inhomogeneous integrodifferential equation of motion. The convergence behavior is examined using a four-level model system under the influence of non-Markovian relaxation. The results show that high quality solutions can be obtained over a wide range of parameters that characterize the algorithms, independent of the presence or absence of relaxation.
Original language | English (US) |
---|---|
Article number | 033407 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Volume | 75 |
Issue number | 3 |
DOIs | |
State | Published - Mar 19 2007 |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics