Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue

A. Ortega-Esteban, A. J. Pérez-Berná, R. Menéndez-Conejero, S. J. Flint, C. San Martín, P. J. De Pablo

Research output: Contribution to journalArticlepeer-review

82 Scopus citations


The standard pathway for virus infection of eukaryotic cells requires disassembly of the viral shell to facilitate release of the viral genome into the host cell. Here we use mechanical fatigue, well below rupture strength, to induce stepwise disruption of individual human adenovirus particles under physiological conditions, and simultaneously monitor disassembly in real time. Our data show the sequence of dismantling events in individual mature (infectious) and immature (noninfectious) virions, starting with consecutive release of vertex structures followed by capsid cracking and core exposure. Further, our experiments demonstrate that vertex resilience depends inextricably on maturation, and establish the relevance of penton vacancies as seeding loci for virus shell disruption. The mechanical fatigue disruption route recapitulates the adenovirus disassembly pathway in vivo, as well as the stability differences between mature and immature virions.

Original languageEnglish (US)
Article number1434
JournalScientific reports
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue'. Together they form a unique fingerprint.

Cite this