Abstract
Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two α and two β subunits. Free α-hemoglobin (αHb) is unstable, and its precipitation contributes to the pathophysiology of β thalassemia. In erythrocytes, the α-hemoglobin stabilizing protein (AHSP) binds αHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-αHb reveals that AHSP specifically recognizes the G and H helices of αHb through a hydrophobic interface that largely recapitulates the α1-β1 interface of hemoglobin. The AHSP-αHb interactions are extensive but suboptimal, explaining why β-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound αHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-αHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free αHb.
Original language | English (US) |
---|---|
Pages (from-to) | 629-640 |
Number of pages | 12 |
Journal | Cell |
Volume | 119 |
Issue number | 5 |
DOIs | |
State | Published - Nov 24 2004 |
All Science Journal Classification (ASJC) codes
- General Biochemistry, Genetics and Molecular Biology