TY - JOUR
T1 - Modulation of sensory suppression
T2 - Implications for receptive field sizes in the human visual cortex
AU - Kastner, Sabine
AU - De Weerd, Peter
AU - Pinsk, Mark A.
AU - Elizondo, M. Idette
AU - Desimone, Robert
AU - Ungerleider, Leslie G.
PY - 2001
Y1 - 2001
N2 - Neurophysiological studies in monkeys show that when multiple visual stimuli appear simultaneously in the visual field, they are not processed independently, but rather interact in a mutually suppressive way. This suggests that multiple stimuli compete for neural representation. Consistent with this notion, we have previously found in humans that functional magnetic resonance imaging (fMRI) signals in V1 and ventral extrastriate areas V2, V4, and TEO are smaller for simultaneously presented (i.e., competing) stimuli than for the same stimuli presented sequentially (i.e., not competing). Here we report that suppressive interactions between stimuli are also present in dorsal extrastriate areas V3A and MT, and we compare these interactions to those in areas V1 through TEO. To exclude the possibility that the differences in responses to simultaneously and sequentially presented stimuli were due to differences in the number of transient onsets, we tested for suppressive interactions in area V4, in an experiment that held constant the number of transient onsets. We found that the fMRI response to a stimulus in the upper visual field was suppressed by the presence of nearby stimuli in the lower visual field. Further, we excluded the possibility that the greater fMRI responses to sequential compared with simultaneous presentations were due to exogeneous attentional cueing by having our subjects count T's or L's at fixation, an attentionally demanding task. Behavioral testing demonstrated that neither condition interfered with performance of the T/L task. Our previous findings suggested that suppressive interactions among nearby stimuli in areas V1 through TEO were scaled to the receptive field (RF) sizes of neurons in those areas. Here we tested this idea by parametrically varying the spatial separation among stimuli in the display. Display sizes ranged from 2 × 2° to 7° × 7° and were centered at 5.5° eccentricity. Based on the effects of display size on the magnitude of suppressive interactions, we estimated that RF sizes at an eccentricity of 5.5 ° were < 2° in V1, 2- 4° in V2, 4- 6° in V4, larger than 7° (but still confined to a quadrant) in TEO, and larger than 6° (confined to a quadrant) in V3A. These estimates of RF sizes in human visual cortex are strikingly similar to those measured in physiological mapping studies in the homologous visual areas in monkeys.
AB - Neurophysiological studies in monkeys show that when multiple visual stimuli appear simultaneously in the visual field, they are not processed independently, but rather interact in a mutually suppressive way. This suggests that multiple stimuli compete for neural representation. Consistent with this notion, we have previously found in humans that functional magnetic resonance imaging (fMRI) signals in V1 and ventral extrastriate areas V2, V4, and TEO are smaller for simultaneously presented (i.e., competing) stimuli than for the same stimuli presented sequentially (i.e., not competing). Here we report that suppressive interactions between stimuli are also present in dorsal extrastriate areas V3A and MT, and we compare these interactions to those in areas V1 through TEO. To exclude the possibility that the differences in responses to simultaneously and sequentially presented stimuli were due to differences in the number of transient onsets, we tested for suppressive interactions in area V4, in an experiment that held constant the number of transient onsets. We found that the fMRI response to a stimulus in the upper visual field was suppressed by the presence of nearby stimuli in the lower visual field. Further, we excluded the possibility that the greater fMRI responses to sequential compared with simultaneous presentations were due to exogeneous attentional cueing by having our subjects count T's or L's at fixation, an attentionally demanding task. Behavioral testing demonstrated that neither condition interfered with performance of the T/L task. Our previous findings suggested that suppressive interactions among nearby stimuli in areas V1 through TEO were scaled to the receptive field (RF) sizes of neurons in those areas. Here we tested this idea by parametrically varying the spatial separation among stimuli in the display. Display sizes ranged from 2 × 2° to 7° × 7° and were centered at 5.5° eccentricity. Based on the effects of display size on the magnitude of suppressive interactions, we estimated that RF sizes at an eccentricity of 5.5 ° were < 2° in V1, 2- 4° in V2, 4- 6° in V4, larger than 7° (but still confined to a quadrant) in TEO, and larger than 6° (confined to a quadrant) in V3A. These estimates of RF sizes in human visual cortex are strikingly similar to those measured in physiological mapping studies in the homologous visual areas in monkeys.
UR - http://www.scopus.com/inward/record.url?scp=0034844134&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034844134&partnerID=8YFLogxK
U2 - 10.1152/jn.2001.86.3.1398
DO - 10.1152/jn.2001.86.3.1398
M3 - Article
C2 - 11535686
AN - SCOPUS:0034844134
SN - 0022-3077
VL - 86
SP - 1398
EP - 1411
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 3
ER -