Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Michael Chang, Sidhant Kaushik, Sergey Levine, Thomas L. Griffiths

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Many transfer problems require re-using previously optimal decisions for solving new tasks, which suggests the need for learning algorithms that can modify the mechanisms for choosing certain actions independently of those for choosing others. However, there is currently no formalism nor theory for how to achieve this kind of modular credit assignment. To answer this question, we define modular credit assignment as a constraint on minimizing the algorithmic mutual information among feedback signals for different decisions. We introduce what we call the modularity criterion for testing whether a learning algorithm satisfies this constraint by performing causal analysis on the algorithm itself. We generalize the recently proposed societal decision-making framework as a more granular formalism than the Markov decision process to prove that for decision sequences that do not contain cycles, certain single-step temporal difference action-value methods meet this criterion while all policy-gradient methods do not. Empirical evidence suggests that such action-value methods are more sample efficient than policy-gradient methods on transfer problems that require only sparse changes to a sequence of previously optimal decisions.

Original languageEnglish (US)
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages1452-1462
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Externally publishedYes
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: Jul 18 2021Jul 24 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period7/18/217/24/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment'. Together they form a unique fingerprint.

Cite this