Modular orientations of random and quasi-random regular graphs

Noga Alon, Paweł Prałat

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Extending an old conjecture of Tutte, Jaeger conjectured in 1988 that for any fixed integer p ≥ 1, the edges of any 4p-edge connected graph can be oriented so that the difference between the outdegree and the indegree of each vertex is divisible by 2p+1. It is known that it suffices to prove this conjecture for (4p+1)-regular, 4p-edge connected graphs. Here we show that there exists a finite p0 such that for every p > p0 the assertion of the conjecture holds for all (4p+1)-regular graphs that satisfy some mild quasi-random properties, namely, the absolute value of each of their non-trivial eigenvalues is at most c1p2/3 and the neighbourhood of each vertex contains at most c2p3/2 edges, where c1, c2 > 0 are two absolute constants. In particular, this implies that for p > p0 the assertion of the conjecture holds asymptotically almost surely for random (4p+1)-regular graphs.

Original languageEnglish (US)
Pages (from-to)321-329
Number of pages9
JournalCombinatorics Probability and Computing
Volume20
Issue number3
DOIs
StatePublished - May 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Statistics and Probability
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Modular orientations of random and quasi-random regular graphs'. Together they form a unique fingerprint.

Cite this