TY - GEN
T1 - Models of adaptive navigation, inspired by ant transport strategy in the presence of obstacles
AU - Esterly, Elizabeth E.
AU - McCreery, Helen
AU - Nagpal, Radhika
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - Cooperative transport is an impressive example of collective behavior in ants, where groups of ants work together to move heavy food objects back to their nest over heterogeneous terrain. This behavior also serves as a model for bio-inspired robotics. While many studies have considered the mechanisms by which ants transport objects in simple settings, few have looked at how they deal with obstacles and heterogeneous terrain. A recent study on Paratrechina longicornis (crazy ants) demonstrated that groups of these ants implement a stochastic, adaptive, and robust cooperative transport strategy that allows them to succeed at navigating challenging obstacles that require moving away from their goal. In this paper, we use group-level computational models to investigate the significance and implications of this biological strategy. We develop an algorithm that reproduces important elements of the strategy, and compare it to several benchmark algorithms for a range of obstacle sizes and shapes. Our results show that, for smaller obstacles, the ant-inspired adaptive stochastic strategy is adept at efficient navigation, due to its ability to match the level of randomness it uses to unknown object size and shape. We also find some unexpected differences between our results and the original ant transport behavior, suggesting new biological experiments.
AB - Cooperative transport is an impressive example of collective behavior in ants, where groups of ants work together to move heavy food objects back to their nest over heterogeneous terrain. This behavior also serves as a model for bio-inspired robotics. While many studies have considered the mechanisms by which ants transport objects in simple settings, few have looked at how they deal with obstacles and heterogeneous terrain. A recent study on Paratrechina longicornis (crazy ants) demonstrated that groups of these ants implement a stochastic, adaptive, and robust cooperative transport strategy that allows them to succeed at navigating challenging obstacles that require moving away from their goal. In this paper, we use group-level computational models to investigate the significance and implications of this biological strategy. We develop an algorithm that reproduces important elements of the strategy, and compare it to several benchmark algorithms for a range of obstacle sizes and shapes. Our results show that, for smaller obstacles, the ant-inspired adaptive stochastic strategy is adept at efficient navigation, due to its ability to match the level of randomness it uses to unknown object size and shape. We also find some unexpected differences between our results and the original ant transport behavior, suggesting new biological experiments.
UR - http://www.scopus.com/inward/record.url?scp=85046079036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046079036&partnerID=8YFLogxK
U2 - 10.1109/SSCI.2017.8280899
DO - 10.1109/SSCI.2017.8280899
M3 - Conference contribution
AN - SCOPUS:85046079036
T3 - 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
SP - 1
EP - 8
BT - 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017
Y2 - 27 November 2017 through 1 December 2017
ER -