Abstract
Learning to count is an important example of the broader human capacity for systematic generalization, and the development of counting is often characterized by an inflection point when children rapidly acquire proficiency with the procedures that support this ability. We aimed to model this process by training a reinforcement learning agent to select N items from a binary vector when instructed (known as the give-N task). We found that a memory-augmented modular network architecture based on the recently proposed Emergent Symbol Binding Network (ESBN) exhibited an inflection during learning that resembled human development. This model was also capable of systematic extrapolation outside the range of its training set - for example, trained only to select between 1 and 10 items, it could succeed at selecting 11 to 15 items as long as it could make use of an arbitrary count sequence of at least that length. The close parallels to child development and the capacity for extrapolation suggest that our model could shed light on the emergence of systematicity in humans.
Original language | English (US) |
---|---|
Pages | 868-874 |
Number of pages | 7 |
State | Published - 2021 |
Event | 43rd Annual Meeting of the Cognitive Science Society: Comparative Cognition: Animal Minds, CogSci 2021 - Virtual, Online, Austria Duration: Jul 26 2021 → Jul 29 2021 |
Conference
Conference | 43rd Annual Meeting of the Cognitive Science Society: Comparative Cognition: Animal Minds, CogSci 2021 |
---|---|
Country/Territory | Austria |
City | Virtual, Online |
Period | 7/26/21 → 7/29/21 |
All Science Journal Classification (ASJC) codes
- Cognitive Neuroscience
- Artificial Intelligence
- Computer Science Applications
- Human-Computer Interaction
Keywords
- counting
- development
- give-N
- memory-augmented neural networks
- reinforcement learning