Modeling the effects of vasculature evolution on early brain tumor growth

Jana L. Gevertz, Salvatore Torquato

Research output: Contribution to journalArticle

72 Scopus citations

Abstract

Mathematical modeling of both tumor growth and angiogenesis have been active areas of research for the past several decades. Such models can be classified into one of two categories: those that analyze the remodeling of the vasculature while ignoring changes in the tumor mass, and those that predict tumor expansion in the presence of a non-evolving vasculature. However, it is well accepted that vasculature remodeling and tumor growth strongly depend on one another. For this reason, we have developed a two-dimensional hybrid cellular automaton model of early brain tumor growth that couples the remodeling of the microvasculature with the evolution of the tumor mass. A system of reaction-diffusion equations has been developed to track the concentration of vascular endothelial growth factor (VEGF), Ang-1, Ang-2, their receptors and their complexes in space and time. The properties of the vasculature and hence of each cell are determined by the relative concentrations of these key angiogenic factors. The model exhibits an angiogenic switch consistent with experimental observations on the upregulation of angiogenesis. Particularly, we show that if the pathways that produce and respond to VEGF and the angiopoietins are properly functioning, angiogenesis is initiated and a tumor can grow to a macroscopic size. However, if the VEGF pathway is inhibited, angiogenesis does not occur and tumor growth is thwarted beyond 1-2 mm in size. Furthermore, we show that tumor expansion can occur in well-vascularized environments even when angiogenesis is inhibited, suggesting that anti-angiogenic therapies may not be sufficient to eliminate a population of actively dividing malignant cells.

Original languageEnglish (US)
Pages (from-to)517-531
Number of pages15
JournalJournal of Theoretical Biology
Volume243
Issue number4
DOIs
StatePublished - Dec 21 2006

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modeling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Keywords

  • Angiogenesis
  • Angiopoietin
  • Hybrid cellular automaton
  • Tumor growth
  • VEGF

Fingerprint Dive into the research topics of 'Modeling the effects of vasculature evolution on early brain tumor growth'. Together they form a unique fingerprint.

  • Cite this