TY - GEN
T1 - Modeling bamboo as a functionally graded material
AU - Silva, Emílio Carlos Nelli
AU - Walters, Matthew C.
AU - Paulino, Glaucio H.
PY - 2008
Y1 - 2008
N2 - Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.
AB - Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.
KW - Bamboo
KW - Finite element analysis
KW - Functionally graded material
KW - Graded elements
KW - Homogenization
UR - http://www.scopus.com/inward/record.url?scp=40449121007&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40449121007&partnerID=8YFLogxK
U2 - 10.1063/1.2896876
DO - 10.1063/1.2896876
M3 - Conference contribution
AN - SCOPUS:40449121007
SN - 9780735404922
T3 - AIP Conference Proceedings
SP - 754
EP - 759
BT - Multiscale and Functionally Graded Materials - Proceedings of the International Conference, FGM IX
T2 - 9th International Conference on Multiscale and Functionally Graded Materials, FGM IX
Y2 - 15 October 2006 through 18 October 2006
ER -