Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter

Sunghan Ro, Buming Guo, Aaron Shih, Trung V. Phan, Robert H. Austin, Dov Levine, Paul M. Chaikin, Stefano Martiniani

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high dimensionality of their state space makes it difficult to measure. Here we introduce a local measure of entropy production and a numerical protocol to estimate it. We establish a connection between the entropy production and extractability of work in a given region of the system and show how this quantity depends crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and experiments by considering systems of active Brownian particles undergoing motility-induced phase separation, as well as active Brownian particles and E.coli in a rectifying device in which the time-reversal asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macroscopic scale.

Original languageEnglish (US)
Article number220601
JournalPhysical review letters
Volume129
Issue number22
DOIs
StatePublished - Nov 23 2022

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter'. Together they form a unique fingerprint.

Cite this