TY - JOUR
T1 - Model-based targeted dimensionality reduction for neuronal population data
AU - Aoi, Mikio C.
AU - Pillow, Jonathan William
N1 - Funding Information:
This work was supported by grants from the Simons Foundation (SCGB AWD1004351 and AWD543027), the NIH (R01EY017366, R01NS104899) and a U19 NIH-NINDS BRAIN Initiative Award (NS104648-01).
Publisher Copyright:
© 2018 Curran Associates Inc.All rights reserved.
PY - 2018
Y1 - 2018
N2 - Summarizing high-dimensional data using a small number of parameters is a ubiquitous first step in the analysis of neuronal population activity. Recently developed methods use “targeted" approaches that work by identifying multiple, distinct low-dimensional subspaces of activity that capture the population response to individual experimental task variables, such as the value of a presented stimulus or the behavior of the animal. These methods have gained attention because they decompose total neural activity into what are ostensibly different parts of a neuronal computation. However, existing targeted methods have been developed outside of the confines of probabilistic modeling, making some aspects of the procedures ad hoc, or limited in flexibility or interpretability. Here we propose a new model-based method for targeted dimensionality reduction based on a probabilistic generative model of the population response data. The low-dimensional structure of our model is expressed as a low-rank factorization of a linear regression model. We perform efficient inference using a combination of expectation maximization and direct maximization of the marginal likelihood. We also develop an efficient method for estimating the dimensionality of each subspace. We show that our approach outperforms alternative methods in both mean squared error of the parameter estimates, and in identifying the correct dimensionality of encoding using simulated data. We also show that our method provides more accurate inference of low-dimensional subspaces of activity than a competing algorithm, demixed PCA.
AB - Summarizing high-dimensional data using a small number of parameters is a ubiquitous first step in the analysis of neuronal population activity. Recently developed methods use “targeted" approaches that work by identifying multiple, distinct low-dimensional subspaces of activity that capture the population response to individual experimental task variables, such as the value of a presented stimulus or the behavior of the animal. These methods have gained attention because they decompose total neural activity into what are ostensibly different parts of a neuronal computation. However, existing targeted methods have been developed outside of the confines of probabilistic modeling, making some aspects of the procedures ad hoc, or limited in flexibility or interpretability. Here we propose a new model-based method for targeted dimensionality reduction based on a probabilistic generative model of the population response data. The low-dimensional structure of our model is expressed as a low-rank factorization of a linear regression model. We perform efficient inference using a combination of expectation maximization and direct maximization of the marginal likelihood. We also develop an efficient method for estimating the dimensionality of each subspace. We show that our approach outperforms alternative methods in both mean squared error of the parameter estimates, and in identifying the correct dimensionality of encoding using simulated data. We also show that our method provides more accurate inference of low-dimensional subspaces of activity than a competing algorithm, demixed PCA.
UR - http://www.scopus.com/inward/record.url?scp=85064845979&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064845979&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85064845979
SN - 1049-5258
VL - 2018-December
SP - 6690
EP - 6699
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 32nd Conference on Neural Information Processing Systems, NeurIPS 2018
Y2 - 2 December 2018 through 8 December 2018
ER -