TY - GEN
T1 - Model-based reinforcement learning with value-Targeted regression
AU - Ayoub, Alex
AU - Jia, Zeyu
AU - Szepesvari, Csaba
AU - Wang, Mengdi
AU - Yang, Lin F.
N1 - Publisher Copyright:
© ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - This paper studies model-based reinforcement learning (RL) for regret minimization. We focus on finite-horizon episodic RL where the transition model P belongs to a known family of models P, a special case of which is when models in P take the form of linear mixtures: P = Pd i=1 iPi. We propose a model based RL algorithm that is based on the optimism principle: In each episode, the set of models that are consistent with the data collected is constructed. The criterion of consistency is based on the total squared error that the model incurs on the task of predicting state values as determined by the last value estimate along the transitions. The next value function is then chosen by solving the optimistic planning problem with the constructed set of models. We derive a bound on the regret, which, in the special case of linear mixtures, takes the form O (dpH3T), where H, T and d are the horizon, the total number of steps and the dimension of , respectively. In particular, this regret bound is independent of the total number of states or actions, and is close to a lower bound (pHdT). For a general model family P, the regret bound is derived based on the Eluder dimension.
AB - This paper studies model-based reinforcement learning (RL) for regret minimization. We focus on finite-horizon episodic RL where the transition model P belongs to a known family of models P, a special case of which is when models in P take the form of linear mixtures: P = Pd i=1 iPi. We propose a model based RL algorithm that is based on the optimism principle: In each episode, the set of models that are consistent with the data collected is constructed. The criterion of consistency is based on the total squared error that the model incurs on the task of predicting state values as determined by the last value estimate along the transitions. The next value function is then chosen by solving the optimistic planning problem with the constructed set of models. We derive a bound on the regret, which, in the special case of linear mixtures, takes the form O (dpH3T), where H, T and d are the horizon, the total number of steps and the dimension of , respectively. In particular, this regret bound is independent of the total number of states or actions, and is close to a lower bound (pHdT). For a general model family P, the regret bound is derived based on the Eluder dimension.
UR - http://www.scopus.com/inward/record.url?scp=85105143400&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105143400&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105143400
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 440
EP - 451
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -