Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains

Jonathan William Pillow, Yashar Ahmadian, Liam Paninski

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

Original languageEnglish (US)
Pages (from-to)1-45
Number of pages45
JournalNeural computation
Volume23
Issue number1
DOIs
StatePublished - Jan 2011

All Science Journal Classification (ASJC) codes

  • Arts and Humanities (miscellaneous)
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains'. Together they form a unique fingerprint.

Cite this