Mode estimation for high dimensional discrete tree graphical models

Chao Chen, Han Liu, Dimitris N. Metaxas, Tianqi Zhao

Research output: Contribution to journalConference articlepeer-review

12 Scopus citations

Abstract

This paper studies the following problem: given samples from a high dimensional discrete distribution, we want to estimate the leading (δ, ρ)-modes of the underlying distributions. A point is defined to be a (δ, ρ)-mode if it is a local optimum of the density within a δ-neighborhood under metric ρ. As we increase the "scale" parameter δ, the neighborhood size increases and the total number of modes monotonically decreases. The sequence of the (δ, ρ)-modes reveal intrinsic topographical information of the underlying distributions. Though the mode finding problem is generally intractable in high dimensions, this paper unveils that, if the distribution can be approximated well by a tree graphical model, mode characterization is significantly easier. An efficient algorithm with provable theoretical guarantees is proposed and is applied to applications like data analysis and multiple predictions.

Original languageEnglish (US)
Pages (from-to)1323-1331
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2
Issue numberJanuary
StatePublished - 2014
Event28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada
Duration: Dec 8 2014Dec 13 2014

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Mode estimation for high dimensional discrete tree graphical models'. Together they form a unique fingerprint.

Cite this