TY - JOUR
T1 - Mobility gradients yield rubbery surfaces on top of polymer glasses
AU - Hao, Zhiwei
AU - Ghanekarade, Asieh
AU - Zhu, Ningtao
AU - Randazzo, Katelyn
AU - Kawaguchi, Daisuke
AU - Tanaka, Keiji
AU - Wang, Xinping
AU - Simmons, David S.
AU - Priestley, Rodney D.
AU - Zuo, Biao
N1 - Funding Information:
Acknowledgements We thank N. L. Yamada for assisting with the neutron reflectivity measurements and O. K. C. Tsui and J. J. Zhou for discussions. B.Z. acknowledges financial support from the Natural Science Foundation of China (grant numbers 21973083 and 21504081), and R.D.P. and K.R. acknowledge support from the National Science Foundation (NSF) Materials Research Science and Engineering Center Program through the Princeton Center for Complex Materials (grant numbers DMR-1420541 and DMR-2011750) and the NSF through grant number CBET-1706012. D.S.S. and A.G. acknowledge support from the National Science Foundation through grant number CBET-1854308. X.W. thanks the Natural Science Foundation of China (grant numbers 21674100 and 21873085), and K.T. acknowledges the JST-Mirai Program (JPMJMI18A2). We also acknowledge the BL-16 line at J-PARC (programme no.2017L2501) for providing beam time.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/8/19
Y1 - 2021/8/19
N2 - Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3–5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale—the size of the polymer chain—as well as the length scale of the interfacial mobility gradient6–9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time−temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.
AB - Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3–5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale—the size of the polymer chain—as well as the length scale of the interfacial mobility gradient6–9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time−temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.
UR - http://www.scopus.com/inward/record.url?scp=85113155385&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113155385&partnerID=8YFLogxK
U2 - 10.1038/s41586-021-03733-7
DO - 10.1038/s41586-021-03733-7
M3 - Article
C2 - 34408328
AN - SCOPUS:85113155385
SN - 0028-0836
VL - 596
SP - 372
EP - 376
JO - Nature
JF - Nature
IS - 7872
ER -