TY - GEN
T1 - Mixing time of exponential random graphs
AU - Bhamidi, Shankar
AU - Bresler, Guy
AU - Sly, Allan
PY - 2008
Y1 - 2008
N2 - A variety of random graph models have been developed in recent years to study a range of problems on networks, driven by the wide availability of data from many social, telecommunication, biochemical and other networks A key model, extensively used in the sociology literature, is the exponential random graph model. This model seeks to incorporate in random graphs the notion of reciprocity, that is, the larger than expected number of triangles and other small subgraphs. Sampling from these distributions is crucial for parameter estimation hypothesis testing, and more generally for understanding basic features of the network model itself. In practice sampling is typically carried out using Markov chain Monte Carlo, in particular either the Glauber dynamics or the Metropolis-Hasting procedure. In this paper we characterize the high and low temperature regimes of the exponential random graph model. We establish that in the high temperature regime the mixing time of the Glauber dynamics is θ;(n2 log n), where n is the number of vertices in the graph; in contrast, we show that in the low temperature regime the mixing is exponentially slow for any local Markov chain. Our results, moreover, give a rigorous basis for criticisms made of such models. In the high temperature regime, where sampling with MCMC is possible, we show that any finite collection of edges are asymptotically independent; thus, the model does not possess the desired reciprocity property, and is not appreciably different from the Erdos-Rényi random graph.
AB - A variety of random graph models have been developed in recent years to study a range of problems on networks, driven by the wide availability of data from many social, telecommunication, biochemical and other networks A key model, extensively used in the sociology literature, is the exponential random graph model. This model seeks to incorporate in random graphs the notion of reciprocity, that is, the larger than expected number of triangles and other small subgraphs. Sampling from these distributions is crucial for parameter estimation hypothesis testing, and more generally for understanding basic features of the network model itself. In practice sampling is typically carried out using Markov chain Monte Carlo, in particular either the Glauber dynamics or the Metropolis-Hasting procedure. In this paper we characterize the high and low temperature regimes of the exponential random graph model. We establish that in the high temperature regime the mixing time of the Glauber dynamics is θ;(n2 log n), where n is the number of vertices in the graph; in contrast, we show that in the low temperature regime the mixing is exponentially slow for any local Markov chain. Our results, moreover, give a rigorous basis for criticisms made of such models. In the high temperature regime, where sampling with MCMC is possible, we show that any finite collection of edges are asymptotically independent; thus, the model does not possess the desired reciprocity property, and is not appreciably different from the Erdos-Rényi random graph.
KW - Exponential random graphs
KW - Mixing times
KW - Path coupling
KW - Pseudo-random graphs
UR - http://www.scopus.com/inward/record.url?scp=57949105276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57949105276&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2008.75
DO - 10.1109/FOCS.2008.75
M3 - Conference contribution
AN - SCOPUS:57949105276
SN - 9780769534367
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 803
EP - 812
BT - Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008
T2 - 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008
Y2 - 25 October 2008 through 28 October 2008
ER -