Abstract
The micrometer-scale tube that fills capsules with thermonuclear fuel in inertial confinement fusion experiments at the National Ignition Facility is also one of the implosion's main degradation sources. It seeds a perturbation that injects the ablator material into the center, radiating away some of the hot-spot energy. This paper discusses how the perturbation arises in experiments using high-density carbon ablators and how the ablator mix interacts once it enters the hot-spot. Both modeling and experiments show an in-flight areal-density perturbation and localized x-ray emission at stagnation from the fill-tube. Simulations suggest that the fill-tube is degrading an otherwise 1D implosion by ∼2×, but when other degradation sources are present, the yield reduction is closer to 20%. Characteristics of the fill-tube assembly, such as the through-hole size and the glue mass, alter the dynamics and magnitude of the degradation. These aspects point the way toward improvements in the design, some of which (smaller diameter fill-tube) have already shown improvements.
| Original language | English (US) |
|---|---|
| Article number | 032703 |
| Journal | Physics of Plasmas |
| Volume | 27 |
| Issue number | 3 |
| DOIs | |
| State | Published - Mar 1 2020 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics