TY - JOUR
T1 - Mixing for three-term progressions in finite simple groups
AU - Peluse, Sarah
N1 - Publisher Copyright:
© Copyright 2017 Cambridge Philosophical Society.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Answering a question of Gowers, Tao proved that any A × B × C ⊂ SLd(Fq)3 contains |A||B||C|/|SLd(Fq)| + Od(|SLd(Fq)|2/qmin(d-1,2)/8) three-term progressions (x, xy, xy2). Using a modification of Tao's argument, we prove such a mixing result for three-term progressions in all nonabelian finite simple groups except for PSL2(Fq) with an error term that depends on the degree of quasirandomness of the group. This argument also gives an alternative proof of Tao's result when d > 2, but with the error term O(|SLd(q)|2/q(d-1)/24).
AB - Answering a question of Gowers, Tao proved that any A × B × C ⊂ SLd(Fq)3 contains |A||B||C|/|SLd(Fq)| + Od(|SLd(Fq)|2/qmin(d-1,2)/8) three-term progressions (x, xy, xy2). Using a modification of Tao's argument, we prove such a mixing result for three-term progressions in all nonabelian finite simple groups except for PSL2(Fq) with an error term that depends on the degree of quasirandomness of the group. This argument also gives an alternative proof of Tao's result when d > 2, but with the error term O(|SLd(q)|2/q(d-1)/24).
UR - http://www.scopus.com/inward/record.url?scp=85019720635&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019720635&partnerID=8YFLogxK
U2 - 10.1017/S0305004117000482
DO - 10.1017/S0305004117000482
M3 - Article
AN - SCOPUS:85019720635
SN - 0305-0041
VL - 165
SP - 279
EP - 286
JO - Mathematical Proceedings of the Cambridge Philosophical Society
JF - Mathematical Proceedings of the Cambridge Philosophical Society
IS - 2
ER -