Microgravity burner-generated spherical diffusion flames: Experiment and computation

Stephen D. Tse, Delin Zhu, Chih Jen Sung, Yiguang Ju, Chung K. Law

Research output: Contribution to journalArticlepeer-review

48 Scopus citations


Microgravity experiments were conducted in the 2.2-s drop-tower facility at the NASA Glenn Research Center to study the transient response of the burner-generated spherical diffusion flame caused by its initial displacement from the steady-state position. The experiment involved issuing H2/CH4/inert mixtures of constant fuel mass flow rates from a bronze, porous, 1.27-cm-diameter, spherical burner into atmospheric air. The experimental results on the flame trajectory were found to agree well with those obtained through fully transient computational simulation with detailed chemistry and transport, and appropriate initial conditions. Furthermore, although steady-state behavior should exist for such flames, the experimental and computational results indicated that it cannot be reached within the 2.2-s microgravity duration for the fuels and mass-flow rates tested.To assess the role of radiation on the flame dynamics and extinction, computations were performed without radiation, with radiation employing the optically thin approximation, and with radiation utilizing a detailed emission/absorption statistical narrow band (SNB) model. The computation showed that while the influence of radiative heat loss on the position of the flame is small, proper consideration of radiative effects is crucial in assessing the state of flame extinction. Specifically, while all simulations of the experimental cases studied incorporating radiative heat loss revealed that the flame extinguishes well before the attainment of steady state, simulations accounting for gaseous reabsorption of radiative emissions were required to adequately represent the experiments in terms of extinction time, with the optically thin simulations predicting premature extinction during the flame expansion process. Effects of heat loss to the porous burner were also examined, and the lack of correspondence between the visible flame luminosity and flame strength, as related to flame temperature and heat release rate, was noted.

Original languageEnglish (US)
Pages (from-to)1265-1278
Number of pages14
JournalCombustion and Flame
Issue number4
StatePublished - 2001

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy


Dive into the research topics of 'Microgravity burner-generated spherical diffusion flames: Experiment and computation'. Together they form a unique fingerprint.

Cite this