Abstract
Models for chemical reaction kinetics typically assume well-mixed conditions, in which chemical compositions change in time but are uniform in space. In contrast, many biological and microfluidic systems of interest involve non-uniform flows where gradients in flow velocity dynamically alter the effective reaction volume. Here, we present a theoretical framework for characterizing multi-step reactions that occur when an enzyme or enzymatic substrate is released from a flat solid surface into a linear shear flow. Similarity solutions are developed for situations where the reactions are sufficiently slow compared to a convective time scale, allowing a regular perturbation approach to be employed. For the specific case of Michaelis- Menten reactions, we establish that the transversally averaged concentration of product scales with the distance x downstream as x5/3. We generalize the analysis to n-step reactions, and we discuss the implications for designing new microfluidic kinetic assays to probe the effect of flow on biochemical processes.
Original language | English (US) |
---|---|
Article number | 014108 |
Journal | Biomicrofluidics |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Mar 2 2012 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Fluid Flow and Transfer Processes
- Biomedical Engineering
- General Materials Science
- Colloid and Surface Chemistry