MHDeep: Mental Health Disorder Detection System Based on Wearable Sensors and Artificial Neural Networks

Shayan Hassantabar, Joe Zhang, Hongxu Yin, Niraj K. Jha

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Mental health problems impact the quality of life of millions of people around the world. However, diagnosis of mental health disorders is a challenging problem that often relies on self-reporting by patients about their behavioral patterns and social interactions. Therefore, there is a need for new strategies for diagnosis and daily monitoring of mental health conditions. The recent introduction of body-area networks consisting of a plethora of accurate sensors embedded in smartwatches and smartphones and edge-compatible deep neural networks (DNNs) points toward a possible solution. Such wearable medical sensors (WMSs) enable continuous monitoring of physiological signals in a passive and non-invasive manner. However, disease diagnosis based on WMSs and DNNs, and their deployment on edge devices, such as smartphones, remains a challenging problem. These challenges stem from the difficulty of feature engineering and knowledge distillation from the raw sensor data, as well as the computational and memory constraints of battery-operated edge devices. To this end, we propose a framework called MHDeep that utilizes commercially available WMSs and efficient DNN models to diagnose three important mental health disorders: schizoaffective, major depressive, and bipolar. MHDeep uses eight different categories of data obtained from sensors integrated in a smartwatch and smartphone. These categories include various physiological signals and additional information on motion patterns and environmental variables related to the wearer. MHDeep eliminates the need for manual feature engineering by directly operating on the data streams obtained from participants. Because the amount of data is limited, MHDeep uses a synthetic data generation module to augment real data with synthetic data drawn from the same probability distribution. We use the synthetic dataset to pre-train the weights of the DNN models, thus imposing a prior on the weights. We use a grow-and-prune DNN synthesis approach to learn both architecture and weights during the training process. We use three different data partitions to evaluate the MHDeep models trained with data collected from 74 individuals. We conduct two types of evaluations: at the data instance level and at the patient level. MHDeep achieves an average test accuracy, across the three data partitions, of 90.4%, 87.3%, and 82.4%, respectively, for classifications between healthy and schizoaffective disorder instances, healthy and major depressive disorder instances, and healthy and bipolar disorder instances. At the patient level, MHDeep DNN models achieve an accuracy of 100%, 100%, and 90.0% for the three mental health disorders, respectively, based on inference that uses 40, 16, and 22 minutes of sensor data collection from each patient.

Original languageEnglish (US)
Article number3527170
JournalACM Transactions on Embedded Computing Systems
Volume21
Issue number6
DOIs
StatePublished - Dec 12 2022

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture

Keywords

  • Disease diagnosis
  • health monitoring
  • mental health disorders
  • neural networks
  • synthetic data generation
  • wearable medical sensors

Fingerprint

Dive into the research topics of 'MHDeep: Mental Health Disorder Detection System Based on Wearable Sensors and Artificial Neural Networks'. Together they form a unique fingerprint.

Cite this