Abstract
A series of palladium complexes bearing a bisphosphine monoxide with a methylene linker, that is, [κ2-P,O-(R12P)CH2P(O)R22]PdMe(2,6-lutidine)][BArF4] (Pd/BPMO), were synthesized and evaluated as catalysts for the homopolymerization of ethylene and the copolymerization of ethylene and polar monomers. X-ray crystallographic analyses revealed that these Pd/BPMO complexes exhibit significantly narrower bite angles and longer Pd-O bonds than Pd/BPMO complexes bearing a phenylene linker, while maintaining almost constant Pd-P bond lengths. Among the complexes synthesized, menthyl-substituted complex 3f (R1 = (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-yl; R2 = Me) showed the best catalytic performance in the homo- and copolymerization in terms of molecular weight and polymerization activity. Meanwhile, complex 3e (R1 = t-Bu; R2 = Me) exhibited a markedly higher incorporation of comonomers in the copolymerization of ethylene and allyl acetate (≤12.0 mol %) or methyl methacrylate (≤0.6 mol %). The catalytic system represents one of the first examples of late-transition-metal complexes bearing an alkylene-bridged bidentate ligand that afford high-molecular-weight copolymers from the copolymerization of ethylene and polar monomers.
Original language | English (US) |
---|---|
Pages (from-to) | 305-311 |
Number of pages | 7 |
Journal | ACS Macro Letters |
Volume | 7 |
Issue number | 3 |
DOIs | |
State | Published - Mar 20 2018 |
All Science Journal Classification (ASJC) codes
- Materials Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Organic Chemistry