TY - JOUR
T1 - Methods to Calculate Electronic Excited-State Dynamics for Molecules on Large Metal Clusters with Many States
T2 - Ensuring Fast Overlap Calculations and a Robust Choice of Phase
AU - Chen, Hsing Ta
AU - Chen, Junhan
AU - Cofer-Shabica, D. Vale
AU - Zhou, Zeyu
AU - Athavale, Vishikh
AU - Medders, Gregory
AU - Menger, Maximilian F.S.J.
AU - Subotnik, Joseph E.
AU - Jin, Zuxin
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/6/14
Y1 - 2022/6/14
N2 - We present an efficient set of methods for propagating excited-state dynamics involving a large number of configuration interaction singles (CIS) or Tamm-Dancoff approximation (TDA) single-reference excited states. Specifically, (i) following Head-Gordon et al., we implement an exact evaluation of the overlap of singly-excited CIS/TDA electronic states at different nuclear geometries using a biorthogonal basis and (ii) we employ a unified protocol for choosing the correct phase for each adiabat at each geometry. For many-electron systems, the combination of these techniques significantly reduces the computational cost of integrating the electronic Schrodinger equation and imposes minimal overhead on top of the underlying electronic structure calculation. As a demonstration, we calculate the electronic excited-state dynamics for a hydrogen molecule scattering off a silver metal cluster, focusing on high-lying excited states, where many electrons can be excited collectively and crossings are plentiful. Interestingly, we find that the high-lying, plasmon-like collective excitation spectrum changes with nuclear dynamics, highlighting the need to simulate non-adiabatic nuclear dynamics and plasmonic excitations simultaneously. In the future, the combination of methods presented here should help theorists build a mechanistic understanding of plasmon-assisted charge transfer and excitation energy relaxation processes near a nanoparticle or metal surface.
AB - We present an efficient set of methods for propagating excited-state dynamics involving a large number of configuration interaction singles (CIS) or Tamm-Dancoff approximation (TDA) single-reference excited states. Specifically, (i) following Head-Gordon et al., we implement an exact evaluation of the overlap of singly-excited CIS/TDA electronic states at different nuclear geometries using a biorthogonal basis and (ii) we employ a unified protocol for choosing the correct phase for each adiabat at each geometry. For many-electron systems, the combination of these techniques significantly reduces the computational cost of integrating the electronic Schrodinger equation and imposes minimal overhead on top of the underlying electronic structure calculation. As a demonstration, we calculate the electronic excited-state dynamics for a hydrogen molecule scattering off a silver metal cluster, focusing on high-lying excited states, where many electrons can be excited collectively and crossings are plentiful. Interestingly, we find that the high-lying, plasmon-like collective excitation spectrum changes with nuclear dynamics, highlighting the need to simulate non-adiabatic nuclear dynamics and plasmonic excitations simultaneously. In the future, the combination of methods presented here should help theorists build a mechanistic understanding of plasmon-assisted charge transfer and excitation energy relaxation processes near a nanoparticle or metal surface.
UR - http://www.scopus.com/inward/record.url?scp=85131893016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131893016&partnerID=8YFLogxK
U2 - 10.1021/acs.jctc.1c01304
DO - 10.1021/acs.jctc.1c01304
M3 - Article
C2 - 35609255
AN - SCOPUS:85131893016
SN - 1549-9618
VL - 18
SP - 3296
EP - 3307
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 6
ER -