Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer

Wenyun Lu, Michelle F. Clasquin, Eugene Melamud, Daniel Amador-Noguez, Amy A. Caudy, Joshua D. Rabinowitz

Research output: Contribution to journalArticlepeer-review

402 Scopus citations

Abstract

We present a liquid chromatography?mass spectrometry (LC?MS) method that capitalizes on the mass-resolving power of the orbitrap to enable sensitive and specific measurement of known and unanticipated metabolites in parallel, with a focus on water-soluble species involved in core metabolism. The reversed phase LC method, with a cycle time 25 min, involves a water?methanol gradient on a C18 column with tributylamine as the ion pairing agent. The MS portion involves full scans from 85 to 1000 m/z at 1 Hz and 100?000 resolution in negative ion mode on a stand alone orbitrap ("Exactive"). The median limit of detection, across 80 metabolite standards, was 5 ng/mL with the linear range typically ≥100-fold. For both standards and a cellular extract from Saccharomyces cerevisiae (Bakers yeast), the median inter-run relative standard deviation in peak intensity was 8%. In yeast exact, we detected 137 known compounds, whose 13C-labeling patterns could also be tracked to probe metabolic flux. In yeast engineered to lack a gene of unknown function (YKL215C), we observed accumulation of an ion of m/z 128.0351, which we subsequently confirmed to be oxoproline, resulting in annotation of YKL215C as an oxoprolinase. These examples demonstrate the suitability of the present method for quantitative metabolomics, fluxomics, and discovery metabolite profiling.

Original languageEnglish (US)
Pages (from-to)3212-3221
Number of pages10
JournalAnalytical Chemistry
Volume82
Issue number8
DOIs
StatePublished - Apr 15 2010

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer'. Together they form a unique fingerprint.

Cite this