TY - JOUR
T1 - Metabolic profiling reveals a dependency of human metastatic breast cancer on mitochondrial serine and one-carbon unit metabolism
AU - Li, Albert M.
AU - Ducker, Gregory S.
AU - Li, Yang
AU - Seoane, Jose A.
AU - Xiao, Yiren
AU - Melemenidis, Stavros
AU - Zhou, Yiren
AU - Liu, Ling
AU - Vanharanta, Sakari
AU - Graves, Edward E.
AU - Rankin, Erinn B.
AU - Curtis, Christina
AU - Massague, Joan
AU - Rabinowitz, Joshua D.
AU - Thompson, Craig B.
AU - Ye, Jiangbin
N1 - Publisher Copyright:
© 2020 American Association for Cancer Research.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Breast cancer is the most common cancer among American women and a major cause of mortality. To identify metabolic pathways as potential targets to treat metastatic breast cancer, we performed metabolomics profiling on the breast cancer cell line MDA-MB-231 and its tissue-Tropic metastatic subclones. Here, we report that these subclones with increased metastatic potential display an altered metabolic profile compared with the parental population. In particular, the mitochondrial serine and one-carbon (1C) unit pathway is upregulated in metastatic subclones. Mechanistically, the mitochondrial serine and 1C unit pathway drives the faster proliferation of subclones through enhanced de novo purine biosynthesis. Inhibition of the first rate-limiting enzyme of the mitochondrial serine and 1C unit pathway, serine hydroxymethyltransferase (SHMT2), potently suppresses proliferation of metastatic subclones in culture and impairs growth of lung metastatic subclones at both primary and metastatic sites in mice. Some human breast cancers exhibit a significant association between the expression of genes in the mitochondrial serine and 1C unit pathway with disease outcome and higher expression of SHMT2 in metastatic tumor tissue compared with primary tumors. In addition to breast cancer, a few other cancer types, such as adrenocortical carcinoma and kidney chromophobe cell carcinoma, also display increased SHMT2 expression during disease progression. Together, these results suggest that mitochondrial serine and 1C unit metabolism plays an important role in promoting cancer progression, particularly in late-stage cancer.
AB - Breast cancer is the most common cancer among American women and a major cause of mortality. To identify metabolic pathways as potential targets to treat metastatic breast cancer, we performed metabolomics profiling on the breast cancer cell line MDA-MB-231 and its tissue-Tropic metastatic subclones. Here, we report that these subclones with increased metastatic potential display an altered metabolic profile compared with the parental population. In particular, the mitochondrial serine and one-carbon (1C) unit pathway is upregulated in metastatic subclones. Mechanistically, the mitochondrial serine and 1C unit pathway drives the faster proliferation of subclones through enhanced de novo purine biosynthesis. Inhibition of the first rate-limiting enzyme of the mitochondrial serine and 1C unit pathway, serine hydroxymethyltransferase (SHMT2), potently suppresses proliferation of metastatic subclones in culture and impairs growth of lung metastatic subclones at both primary and metastatic sites in mice. Some human breast cancers exhibit a significant association between the expression of genes in the mitochondrial serine and 1C unit pathway with disease outcome and higher expression of SHMT2 in metastatic tumor tissue compared with primary tumors. In addition to breast cancer, a few other cancer types, such as adrenocortical carcinoma and kidney chromophobe cell carcinoma, also display increased SHMT2 expression during disease progression. Together, these results suggest that mitochondrial serine and 1C unit metabolism plays an important role in promoting cancer progression, particularly in late-stage cancer.
UR - http://www.scopus.com/inward/record.url?scp=85082779721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082779721&partnerID=8YFLogxK
U2 - 10.1158/1541-7786.MCR-19-0606
DO - 10.1158/1541-7786.MCR-19-0606
M3 - Article
C2 - 31941752
AN - SCOPUS:85082779721
SN - 1541-7786
VL - 18
SP - 599
EP - 611
JO - Molecular Cancer Research
JF - Molecular Cancer Research
IS - 4
ER -