TY - GEN
T1 - Memoryless Worker-Task Assignment with Polylogarithmic Switching Cost
AU - Berger, Aaron
AU - Kuszmaul, William
AU - Polak, Adam
AU - Tidor, Jonathan
AU - Wein, Nicole
N1 - Publisher Copyright:
© Aaron Berger, William Kuszmaul, Adam Polak, Jonathan Tidor, and Nicole Wein; licensed under Creative Commons License CC-BY 4.0
PY - 2022/7/1
Y1 - 2022/7/1
N2 - We study the basic problem of assigning memoryless workers to tasks with dynamically changing demands. Given a set of w workers and a multiset T ⊆ [t] of |T| = w tasks, a memoryless worker-task assignment function is any function ϕ that assigns the workers [w] to the tasks T based only on the current value of T. The assignment function ϕ is said to have switching cost at most k if, for every task multiset T, changing the contents of T by one task changes ϕ(T) by at most k worker assignments. The goal of memoryless worker task assignment is to construct an assignment function with the smallest possible switching cost. In past work, the problem of determining the optimal switching cost has been posed as an open question. There are no known sub-linear upper bounds, and after considerable effort, the best known lower bound remains 4 (ICALP 2020). We show that it is possible to achieve polylogarithmic switching cost. We give a construction via the probabilistic method that achieves switching cost O(log w log(wt)) and an explicit construction that achieves switching cost polylog(wt). We also prove a super-constant lower bound on switching cost: we show that for any value of w, there exists a value of t for which the optimal switching cost is w. Thus it is not possible to achieve a switching cost that is sublinear strictly as a function of w. Finally, we present an application of the worker-task assignment problem to a metric embeddings problem. In particular, we use our results to give the first low-distortion embedding from sparse binary vectors into low-dimensional Hamming space.
AB - We study the basic problem of assigning memoryless workers to tasks with dynamically changing demands. Given a set of w workers and a multiset T ⊆ [t] of |T| = w tasks, a memoryless worker-task assignment function is any function ϕ that assigns the workers [w] to the tasks T based only on the current value of T. The assignment function ϕ is said to have switching cost at most k if, for every task multiset T, changing the contents of T by one task changes ϕ(T) by at most k worker assignments. The goal of memoryless worker task assignment is to construct an assignment function with the smallest possible switching cost. In past work, the problem of determining the optimal switching cost has been posed as an open question. There are no known sub-linear upper bounds, and after considerable effort, the best known lower bound remains 4 (ICALP 2020). We show that it is possible to achieve polylogarithmic switching cost. We give a construction via the probabilistic method that achieves switching cost O(log w log(wt)) and an explicit construction that achieves switching cost polylog(wt). We also prove a super-constant lower bound on switching cost: we show that for any value of w, there exists a value of t for which the optimal switching cost is w. Thus it is not possible to achieve a switching cost that is sublinear strictly as a function of w. Finally, we present an application of the worker-task assignment problem to a metric embeddings problem. In particular, we use our results to give the first low-distortion embedding from sparse binary vectors into low-dimensional Hamming space.
KW - Distributed Task Allocation
KW - Metric Embeddings
KW - Probabilistic Method
UR - https://www.scopus.com/pages/publications/85133436506
UR - https://www.scopus.com/inward/citedby.url?scp=85133436506&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2022.19
DO - 10.4230/LIPIcs.ICALP.2022.19
M3 - Conference contribution
AN - SCOPUS:85133436506
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 49th EATCS International Conference on Automata, Languages, and Programming, ICALP 2022
A2 - Bojanczyk, Mikolaj
A2 - Merelli, Emanuela
A2 - Woodruff, David P.
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 49th EATCS International Conference on Automata, Languages, and Programming, ICALP 2022
Y2 - 4 July 2022 through 8 July 2022
ER -