TY - JOUR
T1 - Measuring Black Hole Light Echoes with Very Long Baseline Interferometry
AU - Wong, George N.
AU - Medeiros, Lia
AU - Cárdenas-Avendaño, Alejandro
AU - Stone, James M.
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Light passing near a black hole can follow multiple paths from an emission source to an observer due to strong gravitational lensing. Photons following different paths take different amounts of time to reach the observer, which produces an echo signature in the image. The characteristic echo delay is determined primarily by the mass of the black hole, but it is also influenced by the black hole spin and inclination to the observer. In the Kerr geometry, echo images are demagnified, rotated, and sheared copies of the direct image and lie within a restricted region of the image. Echo images have exponentially suppressed flux, and temporal correlations within the flow make it challenging to directly detect light echoes from the total light curve. In this Letter, we propose a novel method to search for light echoes by correlating the total light curve with the interferometric signal at high spatial frequencies, which is a proxy for indirect emission. We explore the viability of our method using numerical general relativistic magnetohydrodynamic simulations of a near-face-on accretion system scaled to M87-like parameters. We demonstrate that our method can be used to directly infer the echo delay period in simulated data. An echo detection would be clear evidence that we have captured photons that have circled the black hole, and a high-fidelity echo measurement would provide an independent measure of fundamental black hole parameters. Our results suggest that detecting echoes may be achievable through interferometric observations with a modest space-based very long baseline interferometry mission.
AB - Light passing near a black hole can follow multiple paths from an emission source to an observer due to strong gravitational lensing. Photons following different paths take different amounts of time to reach the observer, which produces an echo signature in the image. The characteristic echo delay is determined primarily by the mass of the black hole, but it is also influenced by the black hole spin and inclination to the observer. In the Kerr geometry, echo images are demagnified, rotated, and sheared copies of the direct image and lie within a restricted region of the image. Echo images have exponentially suppressed flux, and temporal correlations within the flow make it challenging to directly detect light echoes from the total light curve. In this Letter, we propose a novel method to search for light echoes by correlating the total light curve with the interferometric signal at high spatial frequencies, which is a proxy for indirect emission. We explore the viability of our method using numerical general relativistic magnetohydrodynamic simulations of a near-face-on accretion system scaled to M87-like parameters. We demonstrate that our method can be used to directly infer the echo delay period in simulated data. An echo detection would be clear evidence that we have captured photons that have circled the black hole, and a high-fidelity echo measurement would provide an independent measure of fundamental black hole parameters. Our results suggest that detecting echoes may be achievable through interferometric observations with a modest space-based very long baseline interferometry mission.
UR - http://www.scopus.com/inward/record.url?scp=85209144747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85209144747&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ad8650
DO - 10.3847/2041-8213/ad8650
M3 - Article
AN - SCOPUS:85209144747
SN - 2041-8205
VL - 975
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L40
ER -