Abstract
Motivation: Recently developed spatial lineage tracing technologies induce somatic mutations at specific genomic loci in a population of growing cells and then measure these mutations in the sampled cells along with the physical locations of the cells. These technologies enable high-throughput studies of developmental processes over space and time. However, these applications rely on accurate reconstruction of a spatial cell lineage tree describing both past cell divisions and cell locations. Spatial lineage trees are related to phylogeographic models that have been well-studied in the phylogenetics literature. We demonstrate that standard phylogeographic models based on Brownian motion are inadequate to describe the spatial symmetric displacement (SD) of cells during cell division. Results: We introduce a new model-the SD model for cell motility that includes symmetric displacements of daughter cells from the parental cell followed by independent diffusion of daughter cells. We show that this model more accurately describes the locations of cells in a real spatial lineage tracing of mouse embryonic stem cells. Combining the spatial SD model with an evolutionary model of DNA mutations, we obtain a phylogeographic model for spatial lineage tracing. Using this model, we devise a maximum likelihood framework-MOLLUSC (Maximum Likelihood Estimation Of Lineage and Location Using Single-Cell Spatial Lineage tracing Data)-to co-estimate time-resolved branch lengths, spatial diffusion rate, and mutation rate. On both simulated and real data, we show that MOLLUSC accurately estimates all parameters. In contrast, the Brownian motion model overestimates spatial diffusion rate in all test cases. In addition, the inclusion of spatial information improves accuracy of branch length estimation compared to sequence data alone. On real data, we show that spatial information has more signal than sequence data for branch length estimation, suggesting augmenting lineage tracing technologies with spatial information is useful to overcome the limitations of genome-editing in developmental systems.
Original language | English (US) |
---|---|
Pages (from-to) | i228-i236 |
Journal | Bioinformatics |
Volume | 40 |
DOIs | |
State | Published - Jul 1 2024 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Computational Theory and Mathematics
- Computational Mathematics