Matter power spectrum and the challenge of percent accuracy

Aurel Schneider, Romain Teyssier, Doug Potter, Joachim Stadel, Julian Onions, Darren S. Reed, Robert E. Smith, Volker Springel, Frazer R. Pearce, Roman Scoccimarro

Research output: Contribution to journalArticlepeer-review

115 Scopus citations

Abstract

Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N-body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N-body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k1 h Mpc-1 and to within three percent at k10 h Mpc-1. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k 2 h Mpc-1. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L=0.5 h-1Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of Mp=109 h-1Mo is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

Original languageEnglish (US)
Article number047
JournalJournal of Cosmology and Astroparticle Physics
Volume2016
Issue number4
DOIs
StatePublished - 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics

Keywords

  • cosmological simulations
  • power spectrum

Fingerprint

Dive into the research topics of 'Matter power spectrum and the challenge of percent accuracy'. Together they form a unique fingerprint.

Cite this