Abstract
Matrix-monotonic optimization exploits the monotonic nature of positive semi-definite matrices to derive optimal diagonalizable structures for the matrix variables of matrix-variable optimization problems. Based on the optimal structures derived, the associated optimization problems can be substantially simplified and underlying physical insights can also be revealed. In our work, a comprehensive framework of the applications of matrix-monotonic optimization to multiple-input multiple-output (MIMO) transceiver design is provided for a series of specific performance metrics under various linear constraints. This framework consists of two parts, i.e., Part-I for single-variable optimization and Part-II for multi-variable optimization. In this paper, single-variable matrix-monotonic optimization is investigated under various power constraints and various types of channel state information (CSI) condition. Specifically, three cases are investigated: 1) both the transmitter and receiver have imperfect CSI; 2) perfect CSI is available at the receiver but the transmitter has no CSI; 3) perfect CSI is available at the receiver but the channel estimation error at the transmitter is norm-bounded. In all three cases, the matrix-monotonic optimization framework can be used for deriving the optimal structures of the optimal matrix variables.
Original language | English (US) |
---|---|
Article number | 9256999 |
Pages (from-to) | 738-754 |
Number of pages | 17 |
Journal | IEEE Transactions on Signal Processing |
Volume | 69 |
DOIs | |
State | Published - 2021 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Signal Processing
- Electrical and Electronic Engineering
Keywords
- Matrix-monotonic optimization
- majorization theory
- optimal structures
- transceiver optimization